CMAC Neural Network Application on Fault Diagnosis of Water Circulation System
نویسنده
چکیده
In this paper, a CMAC (cerebellar model articulation controller) neural network application on fault diagnosis for water circulation system is proposed. Firstly, we build a CMAC neural network based diagnosis system depending on the fault types. Secondly, the fault patterns, obtained from the China scholar’s technical data, would be employed to train the CMAC neural network off-line. Thirdly, the learning algorithm was developed to guarantee the learning convergence. Finally, combining the MATLAB program the trained neural network can be used to diagnose the possible fault types of water circulation system. Comparing with the traditional schemes, following advantages are obtained at least:(1)Eliminate the weights interference between different fault type patterns.(2) Improve the noise rejection ability.(3) Alleviate the dependency to expert’s expertise.(4) Memory size can be reduced by new excited addresses coding technique . (5) High learning and diagnosis speed.
منابع مشابه
Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملA Novel Real-Time Fault Diagnostic System for Steam Turbine Generator Set by Using Strata Hierarchical Artificial Neural Network
The real-time fault diagnosis system is very great important for steam turbine generator set due to a serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using strata hierarchical fuzzy CMAC neural network. A framework of the fault diagnosis system is described. Hierarchical fault diagnostic structure is discuss...
متن کاملDiagnosis of incipient faults in power transformers using CMAC neural network approach
Dissolved gas analysis (DGA) is one of the most useful techniques to detect the incipient faults of power transformer. However, the identification of the faulted location by the traditional method is not always an easy task due to the variability of gas data and operational natures. In this paper, a novel cerebellar model articulation controller (CMAC) neural network (NN) method is presented fo...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006